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FUNDAMENTAL SOLUTIONS IN UNSTEADY 
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(Received 1 July 1994) 

Fundamental  solutions of the unsteady linear problem of elasticity are constructed. The steady case was investigated earlier in 
[1]. © 1996 Elsevier Science Ltd. All rights reserved. 

1. Consider the unsteady equations of linear elasticity [2] 

M i j X j + F i = B i j f C j ,  Bq=pSo( l -$4j ) ,  i , j= l , . ,4  (1.1) 

where {Xfl = {ul, u2, u3, ¢} is the generalized displacement vector and Mid are second-order linear 
differential operators with constant coefficients 

Mit =Ci#t3j3 t, i,k=1,2,3, Mi4 =M4i =elij~j~l, i=1,2,3 (1.2) 

Mi4 = --:~ljOjO l 

In relations (1.2) cidkt are the components of the elastic constants tensor, eu. are the components of 
• • ' . . . . .  V • the piezoelectric constant tensor, ~//are the perrmttlvmes and p is the density. System (1.1) is non- 

hyperbolic (there is no term containing the second derivative with respect to time in the equation with 
i = 4), and its solutions possess a number of singularities. 

We mean by a fundamental solution ~Pt (m) (x, t) the solution of system (1.1) for Ft = 5im~(X)5(t), where 
= 0 

To construct the fundamental solution ~p/(m) (x, t) we will apply a Fourier transformation to system 
(1.1) with respect to the coordinates and with respect to time, respectively, with the vector parameter 
a = (al, a2, a3) and the scalar parameter 

Mij(a)~p)- -¢m)_ co2Bij~FJm) = -Sire (1.3) 

where Mid is obtained from Mid, given by (1.2), by making the replacement Oj ~ (-i~9). 
Solving system (1..3) for the transformant and carrying out an inverse Fourier transformation we obtain 

i [ **+iO Pjm(tX, Oj) e_i[(a,x)+tOtldff.do3 
~p)m) = (2n)'----"T/~, l -**+iO PO (or, co) 

(1.4) 

wherep0(a, co) is an eighth-order homogeneous polynomial andpjm(a, ¢o) are sixth-order homogeneous 
polynomials 

pj,n(rot, ro) = r6pjm(a,¢O), p0(ra, ro) = rSp0(~,¢o) (1.5) 

The following a~,~ertions hold. 

Lemma 1. We h;we the following asymptotic forms as co ---> .o 

p44(Ct, O) I p o ( a , o )  = a~(ot)(l + 0(~-2)) 
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pyre(ix, o~)/poOX, co) = O(to~_d for the pairs j, m = (1, 3), (2, 3) and those symmetrical to them, 
Pyre (~, o~)/po (t~, to) = O(m- ) for the remaining j, m, where a44(tx) is a homogeneous function of order 

- - 2 .  

The proof of the lemma follows from the representation of the functions P0 and Pyre in the form of 
fourth- and third-order determinants, respectively. 

Lemma 2. The equationp0(tx, to) = 0 has only real roots m(t~). 

In the anisotropic theory of elasticity a similar result follows from the presence of three positive roots in 
Christoffel's equation, which defines the propagation velocity of elastic waves in an anisotropic material. This result 
follows from the fact that the elastic energy is positive definite. In the case of an electroelastic material the internal 
energy is expressed as follows [2]: 

i 1 
U = "~CijklEijEkl + -~9~j~,i~,j 

and is a positive definite quadratic form. Here, by solving the last equation in (1.3) for CIg~), which is possible by 
virtue of the fact that the tensor )ij is positive definite and, substituting into the previous equations of (1.3), we 
obtain Christoffel's equation with "toughened" moduli. The assertion of the lemma therefore follows. 

We will simplify representation (1.4) by replacing the variables f~ = art -1, T = I tx I, t~ = Yqk, 1 1] [ = 1 
and using Willis's method [3, 4]. The integral of T will be understood in the sense of the theory of 
generalized functions [5] 

o~ 

In(z)= limlnt(z), l~t(z)= ~ ~ - 2 e - ~ - ~ d T ,  n=2,3 ,  z=f~t+(1] ,x)  
~-40 0 

l (1.6) - I--L- t,~(z)=id 
I~ (z) - iz + e '  "&z 12~ (z) = (z - ie) 2 ' e > 0 

2. For simplicity we will consider the plane case (n = 2), 111 = COS ~ ,  113 = sin t~, t~ ~ [0, 2~]. We have 

gd)m)(x,t)= ~ lim ~ =+jio. p~m(n,a) dnd~ 
(2~)- e->01nl= I -o~+i0 P0(1], f~) f~ t+(1] ,x) - ie  

(2.1) 

We will analyse the integrand in (2.1). In the region Im f~ > 0 we have a single pole f~ = fl~ t-l[ie - 
(11, x)] for t > 0 and no poles for t < 0. By virtue of Lemma 2 there are no other poles in the integrand 
in (2.1) when Im f~ > 0, and, by the theory of residues, we have the representation 

wjm)(x,t)= t+ ~ Pjm(rlt,(rl, x)) {t, t>O (2.2) 
(2~) 2 I'~1=1 Po(rlt,(q ,x)) drl' t+ = O, t<-O 

Herej ,  m = 1, 2, 3, 4, with the exception of the casej = m = 4. 
By virtue of Lemma 1 the integrand in the expression for WC44) is non-decreasing with respect to co, 

and hence we cannot use the closure in the upper half-plane. Selecting the principal part, which is 
independent of co 

P44(ot, to) l po(tX,to) = a44(tx)+/344 (ix, to), a44 = -(at itxttxj) -I = -p(ot) 

we obtain that 

gd(44)(X,t)=-1"~_,2~(t) ~ p(tX)e-i'(Lr)dtx+(2t~) ~ ~ p44(1]t,(1],x))d1] 
(2n) & tnl=J 

(2.3) 

The first integral in (2.3) can be evaluated using the fundamental solution of the Laplace operator. 
We make the change of variables txj = AjkUk, whereA = {Ajk} is the inverse matrix to ~ = (ajk}. Then 

1 ~ p(tx)e-ita'X)do~=detAE(z), E(z)=(In(z , z ) ) /4rc  (2.4) 
(2•) 2 R 3 

and E(x) is the known fundamental solution [5] (AE(x) = ~(x)), z = a-1/2x. Thus, the fundamental solution 
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~P(44)(x, t) has the form 

qJ4 (4) (x, t) = - det a 4re 5 ( t ) ln ( z , z )+  ~ ~44(11t,(rl, x))dq (2.5) 
Iql=l 

Note the specific structure of this component of the fundamental solution, which contains the delta- 
function with respect to time, which corresponds to the instantaneous induction of potential over the 
whole region when there is electric excitation. This is a consequence of neglecting the derivative with 
respect to time in Maxwell's equation when describing the propagation of acoustic disturbances [4]. 
Note that, in other re:;pects, the fundamental solutions (2.2) possess the usual properties of fundamental 
solutions for hyperbolic systems, in particular, for any instant of time t there is a region x ~ R2 where 
the perturbations are zero. This assertion is proved below 

By virtue of Lemma 2p0 (11, ~ )  = B0(rl)H~= a (~  - ~k (rl)), B0(rl) > 0, 111 I = 1, where 0 < ~ ~ ~k 
(rl) ~< ~,~ (k = 1, 2, 31). 

It is obvious that in the region 

max (rl, x)~,]l(rl) >~ t Iql=l 
k=1.2.3 

the equationp0(rl, (1"1, x)/t) = 0 has no solutions. By virtue of this the integrand in (2.2) is regular and 
the integral (2.2) is zero. A similar assertion holds for the integral in (2.5). 

Consider the structure of the integrands in the integrals over the unit circle in (2.2) and (2.5). To use 
these fundamental solutions in practice in the boundary-elements method [6] their integral repre- 
sentations are often sufficient, but we can also propose a method of evaluating them using the theory 
of residues. Taking into account the fact that the integrands in (2.2) and (2.5) are rational functions of 
sin 20 and cos 20, making the change of variable v = ctg ¢ and putting xgt[. I = Yk, we obtain 

P m'(~t ' (~ 'Y))drl=2Jo:  F m, (v ,Y )dv  = 
t,=l p0(qt,(q,Y)) -~ F0(v,Y) 

=4~ i f  ~ res Fjm + /  y_ r e s t )  
~ imvk>O F 0 2 Imvk= 0 

Here 1"0(% y) is an eighth-degree polynomial, Fjm(% y) are sixth-degree polynomials, and Vk (k = 1-8) 
are the roots of F0, which can only be calculated numerically for given y. 

Note.  For piezoelectric ceramics, polarized in the direction of the x3 axis, which is the case most often 
encountered in practice, representations (2.2) and (2.5) remain true, but in this case ~F(2 m) ~ 0 and the 
polynomials Pjm and P0 are of the fourth and sixth degree, respectively. 

This research was carried out with the support of grant number 94-4.5-41 for problems of fundamental 
natural science of the State Committee of the Russian Federation. 
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